May 31, 2007

U.S. Congress introduces Federal RPS legislation

Up to now, much of the responsibility for buying renewable energy to replace existing sources is being placed by state legislatures squarely on the back of their electric utilities. Progressive states have been enacting renewable portfolio standards (RPS) which place a set MW quantity or percentage number to be achieved by a specific date (click on chart below to enlarge). According to a recent issue in The Wall Street Journal the utilities used to be highly resistant but some are now realizing that the standards are not as difficult to comply with as they feared.

After several false starts, the federal government is considering similar legislation:

A bill about to be introduced in the Senate would push utilities to generate drastically more of their power -- 15%, compared with the current 2% -- from sources such as wind or the sun by 2020.

The good news is that entrepreneurs and developers who have long held out for capitalization of their innovative technologies, are suddenly finding a ready market to sell to, at a reasonable price.

Obviously, such requirements would have to be filled with different forms of renewable energy depending on which part of the country is involved. Some, like Rick Boucher of Virginia (Democratic chairman of the Energy and Commerce subcommittee) would like coal to be included as long as the carbon emissions are successfully sequestered. Expect this largely unproven technology to receive priority treatment as the voting nears.

Those states that have fewer renewable resources could purchase green tags, aka "Renewable Energy Credits" (RECs), from those states that produce surpluses.

Here are some excerpts from the article published May 25th...

----------------
Senate Pushes Utilities on 'Green' Sources
Proposal to Require Significant Increase Has Broad Support
by John J. Fialka

The Senate proposal, authored by Sen. Jeff Bingaman, the New Mexico Democrat who is chairman of the Committee on Energy and Natural Resources, defines renewable energy sources as wind, solar, geothermal, wood chips and other biofuels, as well as various ways to make energy from tides and ocean waves.

So far, state laws, which cover 40% of the U.S. population, haven't made a big difference. The percentage of renewable fuels used in the U.S. has hovered from 2% to 2.5% in recent years and will reach only 5.5% by 2020, when most of the state standards are fully phased in. Dr. Wiser estimates state laws have raised the average consumer's utility bill by 38 cents a month. "Clearly, if you want to expand renewable fuels, something has to be done beyond this," he says.

Backers of the Bingaman legislation think the bill could do the trick.

technorati , , , , ,

May 2007 Digest

Tying Energy Efficiency to Renewable Energy

Lost in the rush to develop alternative energy technologies is the obvious value of making energy usage more efficient. As Amory Lovins of the Rocky Mountain Institute would say, "a watt saved is a watt earned." This can be applied to biofuel usage as well. It is far cheaper to save energy than it is to produce more of it, particularly when existing technologies are so wasteful.

In marked contrast to the oil crisis of the 70's when cars lined up on even or odd license number days to tank up on gasoline and speed limits were held to 55 MPH to conserve energy, there has been little preaching by this administration - or the states for that matter - to slow down and use less. Memorial Day weekend driving plans were little impacted by recent gas price spikes. Auto shows still promote performance over gas use efficiency.

It is highly unlikely that the laudable goals of the 25x'25 Initiative for reducing fossil fuel dependence will be reached if we persist in inefficient usage of our energy resources or, in fact, grow our demand beyond current expectations. Similarly, while developing renewable energy (RE) technologies, energy efficiency (EE) needs to be built into the systems.

In a joint report presented by the American Council on Renewable Energy (ACORE) and the American Council for an Energy-Efficency Economy (ACEEE) case studies are showcased that demonstrate the synergies available when RE and EE are developed together. For installations that have such long lifespans and high capital costs, it is important to address efficiency challenges during early planning.

Here are links to stories that were posted in the BioEnergy BlogRing during May, 2007:

BIOstock Blog--------------
Clean Wood replaces Coal Power Plant in N.H.
U.S. paper & pulp industry assesses its bioenergy future

BIOconversion Blog--------------
Molecular visualization of the bioconversion process
U.S. State Dept. to host 2008 Int'l Renewable Energy Conference
IPCC 4th Assessment: Steps to mitigate climate change
U.S. D.O.E./E.I.A. International Energy Outlook 2007

BIOoutput Blog--------------
Tying Energy Efficiency to Renewable Energy
California's electricity - Phasing out coal
Amory Lovins - RMI and the Hypercar

Each month we provide a similar breakdown of article titles from our favorite "companion" site - Biopact Blog. This list is kept current and is accessible in the right hand column of each of the three blogs.

Please forward a link to this digest to anyone you know who would be interested in keeping track of change that will affect us all. They can add their name to the mailing list on the BioConversion Blog.

technorati , , , , , , , ,

May 30, 2007

Amory Lovins - RMI and the Hypercar

The Rocky Mountain Institute is a bastion of knowledge concerning energy efficiency and renewable energy. Much of its expertise focuses on the concept that "a watt saved is a watt earned" demand management can reduce energy expense more dramatically than adding new alternative supply production.

Started in 1982 by Hunter and Amory Lovins, the organization now has 55 employees offering energy, engineering, and efficiency design consultation services. Their website has a special page devoted to explaining RMI's Approach to Energy. But they are not satisfied with merely making recommendations - they are committed to implementing their concepts in significant ways. They work with corporations, municipalities, and energy companies to deploy energy saving technologies for architecture, transit, and utility systems.

One example is their production of the Hypercar® - a fullsize demonstration model that incorporates the use of carbon composites instead of much heavier steel of current manufacture. Their online slide show points out that while 6% of the energy in a car's fuel goes to accelerating the car, less than 1% actually is expended to move the driver. Most goes to moving the car, so that reducing the weight of the car will impact the 2/3 to 3/4 of the fuel use that is weight-related.

The recently redesigned website also features a number of audio and video clips including an appearance by Amory Lovins on The Charlie Rose Show on November 28, 2006. The interchange focused on how the U.S. can eliminate its dependence on oil through market-driven approaches. He talks about RMI's progress in several sectors — including heavy trucks, the military, light vehicles, biofuels, airplanes, and financial — in implementing recommendations made in RMI's book, Winning the Oil Endgame - which has been made available for online download or purchase.

It may have taken 25 years to begin to receive the recognition that the enterprise deserves, but it certainly is well-positioned now to help civilization adjust to a more efficiency-conscious view of energy.

technorati , , , , , , ,

May 29, 2007

California's electricity - Phasing out coal

In its headlong rush to take the front line in the fight against Global Warming (California's AB32) the California Energy Commission has approved regulations that limit the purchase of electricity from power plants that fail to meet strict greenhouse gas emissions standards. That has to be considered bad news for neighboring states which have built coal plant facilities specifically to service the insatiable electricity demands of Californians. According to the Los Angeles Times, 47% of the electricity purchased by the Los Angeles Department of Water and Power comes from giant coal-fired plants in Arizona and Utah.

The benchmark number that new contracts must meet is 1,100 pounds of carbon dioxide (CO2) per megawatt hour. A 2000 study by the U.S. Department of Energy, Carbon Dioxide Emissions from the Generation of Electric Power in the United States, shows that the standard means electricity coming from plants that are cleaner than the average natural gas plants of 1999 (1,321 versus coal's whopping average of 2,095 pounds of CO2 per megawatt hour).

There is no discrimination between carbon positive (fossil fuels) vs. carbon neutral sources of energy. There should be because co-firing carbon neutral biostock could ease the blow to existing coal plant operations.

It is important to note that California periodically suffers brown-outs during the summer months and was the victim of the deregulation electricity nightmare of 2000 and 2001. As Wikipedia recounts the tail:

The California electricity crisis (also known as the Western Energy Crisis) of 2000 and 2001 resulted from the gaming of a partially deregulated California energy system by energy companies such as Enron and Reliant Energy. The energy crisis was characterized by a combination of extremely high prices and rolling blackouts. Price instability and spikes lasted from May 2000 to September 2001. Rolling blackouts began in June 2000 and recurred several times in the following 12 months.

That is not to suggest that current legislation is a "result of gaming". However, it is important that compensating power generators be contracted relatively quickly with a clearcut guarantees that the current benchmark does not suffer downward creep that would raise the risks for investors. As we learned in 2001, it is the public that will suffer the possible consequences and pay the ultimate tab of mis-steps of our energy decisionmakers.

Here is a reprint of the press release made May 23, 2007 by the California Energy Commission...

----------------
New Regulations Restrict Purchase of Electricity From Power Plants That Exceed Greenhouse Gas Emission Limits
New Performance Standard to Regulate Power Plants

The California Energy Commission today approved regulations that limit the purchase of electricity from power plants that fail to meet strict greenhouse gas emissions standards. New regulations, as part of SB 1368 (Perata), prohibit the state's publicly owned utilities from entering into long-term financial commitments with plants that exceed 1,100 pounds of carbon dioxide (CO2) per megawatt hour.

"Working with the Legislature, the Governor has demonstrated a clear vision with this first-in-the-nation legislation to reduce emissions," said Energy Commission Chairman Jackalyne Pfannenstiel. "His bold leadership is helping to reduce California's carbon footprint by ensuring a clean supply of electricity," continued Pfannenstiel.

The implementation of SB 1368 is part of the Energy Commission's further implementation of AB 32 (Nunez), a landmark bill signed by Governor Arnold Schwarzenegger that calls for California to reduce emissions of carbon dioxide and other gases by 25 percent by 2020.

To reduce greenhouse gas emissions, SB 1368 directed the Energy Commission, in collaboration with the California Public Utilities Commission (CPUC) and the California Air Resources Board, to establish a greenhouse gas emission performance standard for power plants.

This standard was reached by evaluating existing combined-cycle natural gas baseload power plants across the west and is the same CO2 measurement approved by the CPUC.

Created by the Legislature in 1974, the California Energy Commission is the state's primary energy policy and planning agency. The Energy Commission has five major responsibilities: forecasting future energy needs and keeping historical energy data; licensing thermal power plants 50 megawatts or larger; promoting energy efficiency through appliance and building standards; developing energy technologies and supporting renewable energy; and planning for and directing state response to energy emergency.

technorati , , ,

May 24, 2007

Tying Energy Efficiency to Renewable Energy

The American Council on Renewable Energy (ACORE) has teamed up with the American Council for an Energy-Efficency Economy (ACE3) to make a statement that creating new renewable energy technologies (RE) will not be enough to achieve national and international goals to meet energy demands while reducing our dependence on carbon positive fossil fuel systems. We also have a responsibility to develop energy efficiency (EE) standards and advanced technologies to mitigate the demand for energy and reduce carbon emissions.

This report, while limiting its scope to renewable electricity, does a good job of not only describing the synergies possible between RE and EE, but also provides numerous case studies of progressive state policies, public benefit funding, and corporations who have demonstrated how these synergies can be implemented.

Below are the conclusions of the report. The full report is available for download from the ACEEE website.

----------------
ENERGY EFFICIENCY INVESTMENTS AND RENEWABLE ENERGY PURCHASES TOGETHER ARE "TWIN PILLARS" IN REDUCING CARBON EMISSIONS
Bill Prindle and Maggie Eldridge,
American Council for an Energy-Efficient Economy
Mike Eckhardt and Alyssa Frederick,
American Council on Renewable Energy

Energy efficiency and renewable energy are the cornerstones of sustainable energy policy. Demand growth for energy must be brought into a sustainable range, so that clean renewable energy technologies can begin to “catch up” with energy demand. If energy demand grows too fast, no supply technology, no matter how clean, will be able to substantially reduce fossil fuel consumption.

Energy efficiency and renewables thus must go hand in hand in any clean energy future. Fortunately, pursuing them jointly offers several important synergies over pursuing one to the exclusion of the other, such as:

• Lower total energy cost—A combined efficiency/renewables resource portfolio is typically less expensive than a renewables-only portfolio, and also generates greater total resource impacts;

• Better timing—Efficiency can typically be deployed quickly, achieving important impacts in the near and mid terms; renewables can take longer to deploy, but may ultimately deliver larger resource impacts;

• Electricity price stability—Efficiency and renewables provide complementary price hedges in power markets, by both moderating demand and diversifying fuel sources;

• Electric system reliability—Energy efficiency can reduce peak demand, reducing the risk of blackouts, while renewables diversify generation sources, and both efficiency and renewables can provide locational benefits in the form of distributed generation; and

• Regional resource balance—While renewables’ availability varies from region to region, energy efficiency is consistently available in end-use sectors across the country. Pursuing both efficiency and renewable resources in tandem thus makes it easier to attain national energy resource targets in any given state.

technorati , , ,

April 30, 2007

April 2007 Digest

Woody Biomass - Energizing a new generation

America is witnessing the balkanization of its renewable energy portfolio. The sun belt is home to solar energy. The corn belt is home to ethanol. Landfill bioenergy is focused in urban areas. The nation's woodpiles are in the Pacific Northwest and the Southeast. Each region will have to come to grips with the economic, technical, environmental, and cultural changes that will be necessary build, market, and sustain development in their communities. NIMBY-ism will be a constant, frustrating impediment to many grand schemes.

We have seen the impact that ethanol has played in the cornbelt. Its communities have embraced the technologies - not without some consternation from its livestock industry. Individual farmers have banded together to form cooperatives to build ethanol plants. Agricultural giants like ADM and Cargill are re-evaluating how they can realign their business units to capitalize on their waste and biomass assets. Politicians are displaying uncharacteristic bipartisanship on ag/energy issues.

Following this model, we are now witnessing an emerging focus in the southeastern U.S. - home to communities that are committed now and in future generations to forestry and wood-related companies. 44% of the existing renewable energy generated in the U.S. comes from and is used by this industry - mostly generated from woody waste accumulating at paper and pulp mills. Landowners are eying biorefinery plans for the region to see if it makes sense to form cooperatives. Moribund mills and chemical factories that have lost business to foreign competition are now viewed as possible sites for new bioenergy ventures since they already have supply and distribution infrastructure in place.

The best resource of the region is the character of the indigenous citizens. Unfailingly patriotic but often regarded as the underappreciated step-children of America, many communities of the Southeast are eager to finally have an opportunity to contribute their regional ingenuity, brawn, and industrial capacity to the national effort to end American addiction to foreign oil. It is, after all, the young, proud southern recruit that continues to carry the bulk of the national security burden caused by this addiction.

As a political footnote, presidential aspirants interested in a Southern strategy should remember that in 2000 Gore lost ALL the states in the region - including his home state of Tennessee which would have put him in the White House. A commitment to woody bioenergy development of the region would be well received. It is not clear that the same can be said of the Pacific Northwest.

Here are links to stories that were posted in the BioEnergy BlogRing during April, 2007:

BIOstock Blog--------------
E3 Biofuels and Closed Loop Ethanol Plants
The need for Public Outreach: a case study in China
BIOstock 101: The BioTown Sourcebook
Woody Biomass Utilization and the USDA Forest Service
Development alliance builds between forest and energy giants
Hybrid poplars reduce carbon emissions best
Thinning trees to save ecology
In-Woods Expo 2007 Harvests Energy

BIOconversion Blog--------------
Industrial Symbiosis: Creating eco-industrial parks
Latin America's Blueprint for Green Energy
BIOconversion 101: The BioTown Sourcebook
EPA releases comprehensive Renewable Fuel Standard (RFS) program
Converting Biomass to Hydrogen
D.O.E. to fund ADM/Purdue cellulosic ethanol project
Friedman Multi-media on "The Power of Green"
Biomass Gasification at the "Chin-dia" price

BIOoutput Blog--------------
Good News from the DOE about Carbon Sequestration
BIOoutput 101: The BioTown Sourcebook

BIOwaste Blog--------------
BIOwaste 101: The BioTown Sourcebook
Hurdles to Waste Conversion Technologies
Smokestack emissions as feedstock for ethanol

Each month we provide a similar breakdown of article titles from our favorite "companion" site - Biopact Blog. This list is kept current and is accessible in the right hand column of each of the three blogs.

Please forward a link to this digest to anyone you know who would be interested in keeping track of change that will affect us all. They can add their name to the mailing list on the BioConversion Blog.

technorati , , , , , , , ,

April 7, 2007

BIOoutput 101: The BioTown Sourcebook

For anyone who desires a simple introduction to the current range of potential BIOoutput products, I suggest a careful reading of a brief technical overview document called The BioTown, USA Sourcebook of Biomass Energy (released in April, 2006). It was written for the Indiana State Department of Agriculture by scientist and fellow blogger, Mark Jenner, PhD. who has his own website called Biomass Rules.

Below you can see an overview graphic that charts where bioconversion products (highlighted in blue) fall in proper context for addressing BIOstock, BIOconversion, and BIOwaste issues. For this reason, I offer a similar 101 abstract treatment in each of my BlogRing blogs.

This BioTown sourcebook is the official inventory on local energy use, available biomass fuels and emerging technologies for Reynolds, Indiana. As such, it can serve as an inventory template for any similarly focused study of a medium-sized rural community. It greater importance is its microcosmic view of rural communities as decentralized, sustainable entities that possess more than enough biomass to service their own energy needs.

Part of the report is devoted to an accounting of the existing energy demand in BioTown: transportation fuels, electricity, and natural gas. As the author states:

The bottom line is that as the cost of fossil fuel-derived energy continues to roughly double every five years, the value of biomass energy makes excellent economic sense. Agricultural commodity prices have remained competitively low for decades. Historically, if the supply of corn, beans, or even hogs is below demand, more are grown the next year – keeping commodity prices low.

At right is a broad "list of product categories from the Guidelines for Designating Biobased Products for Federal Procurement" drafted in 2003 (click to enlarge). "This federal rule-making process was part of a federal policy to procure supplies that made from bio-based material and meet specific criteria." Those criteria are spelled out as percentages of minimum biobased content necessary to qualify. It demonstrates the incredibly broad range of applications the output of bioconversion processes can be applied to.

This report is not a utopian call to return to rural, communal living. It is, instead, an affirmation that there are many biomass resources available and technologies in development to provide environmentally clean bioenergy alternatives to the existing fossil fuel energy paradigm. Rural communities can develop expertise and marketable output best suited to their own resources and industries. Urban communities can develop some technologies that are relevant to the diversion of trash from landfills.

----------------
The BioTown, USA Sourcebook of Biomass Energy

BioTown, USA is Indiana Governor, Mitch Daniel’s, bold approach to develop local renewable energy production, create a cleaner environment, find new solutions to municipal/animal waste issues, and develop new markets for Indiana products – all at the same time. BioTown, USA is quite simply the conversion of Reynolds, Indiana from a reliance on fossil fuels to biomass-based fuels. With the implementation of BioTown, USA, a template will be set that simultaneously promotes Indiana energy security, rural development, profitable agriculture and a green, thriving natural resource environment.

The only conclusion that can be made is that BioTown, USA is profoundly thermodynamically and technologically viable. Reynolds, Indiana used 227,710 million BTUs (MMBTU) in 2005. White County annually produces over 16,881,613 MMBTU in undeveloped biomass energy resources. That is 74 times more energy than Reynolds consumed in 2005.

BioTown, USA is a concept whose time has come. This Sourcebook and subsequent BioTown reports will serve as vital stepping stones to the implementation of BioTown, USA and subsequent bioeconomic rural development opportunities across Indiana and the nation.

technorati , , , , ,